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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 2-5-59E

AN EQUATION FOR THE MEAN VELOCITY DISTRIBUTION OF BOUNDARY LAYERS

By V. A. Sandborn

SUMMARY

A general relation, empirical in origin, for the mean velocity dis-
tribution of both laminar and turbulent boundary layers 1s proposed.
The equation, in general, accurately describes the proflles in both lam-
inar and turbulent flows. The calculation of profiles is based on a
prior knowledge of momentum, displacement, and boundary-layer thickness
together with free-stream conditions. The form for turbulent layers
agrees with the present concepts of similarity of the outer layer. For
the inner region or turbulent boundary layers the present relation agrees
very closely with experimental measurements even in cases where the loga-
rithmic law of the wall is inadequate.

A unique relation between profile form factors and the ratio of dis-
placement thickness to boundary-layer thickness is obtained for turbulent
separation. A similar criterion is also obtained for laminar separation.
These relations are demonstrated to serve as an accurate criterion for
identifying separation in known profiles.

INTRODUCTION

Empirical methods exist for predicting such important quantities as
skin friction and heat transfer in boundary layers. From the standpoint
of basic mechanics, however, there is still much to be learned about
boundary layers. Of the many approximate methods of dealing with boundary
layers, no one solution is general enough to completely describe both
the laminar and turbulent boundary layers.

It is reasonable to suspect that a general solution of the equatiouns
of motion would include both laminar and turbulent flows as special cases.
Indeed, reference 1 has demonstrated that it 1s possible to construct a
relation for the mean velocity of channel flow which is applicable for
either laminar or turbulent flow. Recently, evidence was presented
(ref. 2) suggesting a possible relation of the known laminar boundary
solutions to the measured outer region of turbulent boundary layers.

Thus, it appears of interest to investigate the possibility of finding
one relation to represent the complete veloclty distribution of boundary
layers.
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While of academic interest, a general relation for the velocity
distribution, though expected, would not be too useful as an englneering
tool, since it would be far too complex %to be directly applicable. Study
of a general relation could serve as a guide to the development of con-
sistent flow models of special cases, such as turbulent separation and
laminar-turbulent transition. It would further be of great value in the
analysis of experimental data. As an ultimate objective, this general
relation could point the way toward the theoretical solution of the
boundary-layer equations.

The present analysis treats one possible empirical relation, which
appears to represent the velocity distritbutions of either laminar or tur-
bulent boundary layers in incompressible fluids. The relation is a modi-
fication of the relation employed in reference 1 to represent the veloc-
ity distribution in the channel. An attempt to apply the relation of
reference 1 directly to boundary-layer flow was made in reference 3. The
results of reference 3, while encouraging, did not give as accurate a
representation of turbulent boundary-layer velocity profiles as would be
desirable. Since the presentation of reference 3, it was found that
another step in the generalization of the relation could be made without
introducing any further complication. The relation also works in the
laminar region of the boundary layer. The present relation is of greater
value in the analysis of experimental data and the study of the structure
of the turbulent boundary layer, rather taan in the engineering prediction
of boundary-layer development.

BASTIC EQUATION

The present relation for the mean veloclty distribution is empirical.
Although 1t is suggested in what follows Shat there 1is certain justifica-
tion for the relation, 1ts proof can only be judged by how well the re-
lation fits the known velocity distributions. As a logical first step
in the development of the relation, curreit knowledge about boundary
layers 1s reviewed. The object of such a review is to form a consistent
model for the flow in the boundary layer.

Description of the Boundary Layer

The model for the turbulent boundary layer must conform to certain
established facts. (The Primary concern :.s the establishment of a math-
ematical model for the layer.) In particular, the layer can be divided
into roughly two regions where the flow cliaracteristics are different.
The regions are: (1) The outer (major) portion of the boundary layer
where the transfer of momentum and energy are largely accomplished by the
turbulent fluctuations. (2) The region very near the wall where the ef-
fects of viscosity, as well as the turbulent fluctuations, must be
important.



The outer region of the turbulent boundary layer was extensively
studied in reference 2. It was demonstrated that this outer-region ve-
locity distribution is similar to a laminar velocity distribution. Brief-
ly, the picture of the turbulent velocity profiles proposed in reference
2 is a laminar profile of high viscosity with a very thin sublayer of a
different fluid with much lower viscosity. An analysis presented in
reference 1 for the turbulent velocity distribution in a channel also
implies this similarity to a laminar flow in that the velocity profile
in the outer region of fully developed turbulent channel flow is approx-
imately the same as the laminar distribution.

In an earlier investigation (ref. 4) it was observed that similar
velocity distributions in this outer region could be obtained by proper
selection of the static-pressure distribution. Reference 4 demonstrated
that the distribution of velocity in the outer region was nearly inde-
pendent of the inner region, and that such parameters as momentum thickness
and displacement thickness depended only on the distribution in the outer
region. In a more recent work (ref. 2) proof was given to show that the
similarity was not exact, but that i1t was satisfied within experimental
accuracy.

The flow mechanism near the wall will be more complex than that in
the outer region, in that both viscosity and turbulent transport of momen-
tum and energy are important. The present analysis takes issue with the
mixing length and laminar sublayer model generally assumed for this in-
ner region. The concept of an eddy viscoslty implied by the mixing length
theory may be retained for the present analysis (application of the eddy
viscoslty for pipe flow with the equivalent equation as studied herein
was made in ref. 5); however, the logarithmic velocity distribution could
not be Justified. 1In recent years there has been strong support for an
assumption that the logarithmic-type distribution, obtained from mixing
length theory, 1s a universal distribution for all turbulent boundary-
layer flow. However, it 1s suspected that the similarity observed for
this inner region is only approximate, as in the case of the outer region.
If the concept of a similarity of the outer region is modified (demonstra-
ted in ref. 6), the logarithmic distribution for the inner region is only
a particular solution of a more general power law relation. (The work of
ref. 6 was done unaware of (or before) that completed in ref. 2. In ref.
6 the assumptions of modified similarity were based on suggestions made
by A. A. Townsend.) It 1s important to note that while the data of ref-
erence 7 are cited extensively to Justify the logarithmic distribution
in the different pressure gradient flows, they demonstrate that a power-
law distribution fits the data (see fig. 1, ref. 7). The versatile skin-
friction equation derived in reference 7 depends on the existence of a
power law distribution for the velocity near the wall.

One concept that is not included in the present model for the turbu-
lent boundary layer is the "laminar sublayer." (Of course, a question of



definition may arise here since laminar sublayer may be the term ap-
plied to the complete inner region. However, the word "laminar", flow
in layers, is out of place in such a definition.) While viscosity will
dissipate a great deal of turbulent energy in the region adjacent to the
wall, no Justification can be found for the assumption that all the tur-
bulent energy must be dissipated before the wall is reached.

For the present model of flow in the inner region of the turbulent
boundary layer, it 1s assumed that the influences of wall and viscosity
are evidenced by the orlentation of the direction of the axis of rotation
of eddies, and by the dissipation of turbulent energy. It has been shown
(ref. 8, see fig. 25) that the principal axis of the turbulent stress
tensor tends toward a direction that 1s parallel to the wall as the wall
is approached. This approach is believed to show that the eddies become
parallel to the wall in this region. Thus, the "virtual viscosity" de-
creases as the wall is approached (reaching the molecular value at the
wall) because of the eddy motion becoming parallel to the wall. The model
is crude in that the eddies are far from two-dimensional, so that the
concept of a principal axls has statistical meaning only. This model
does not consider the possibility of a production of turbulent energy,
as well as a dlssipation, in thls inner region.

In summary, the present model for turdsulent boundary layer indicates
an outer region of homogeneous turbulence (as far as transport properties
are concerned), wherein the turbulence can be replaced by a constant eddy
viscosity. Similar velocity profiles are 2ossible in this outer region
to a reasonable degree of approximation. In the inner region, which is
only a very small part of the complete layer, both turbulent and molecular
transport properties exist. The turbulent transport in the inner region
decreases as the wall is approached, partly because of the turbulent
eddies laying over parallel to the wall, aad also because of viscosity
dissipating the turbulent energy. Whlle tie trend in the inner region
1s toward a laminar flow, no completely laninar region exists. The ve-
locity distribution in the 1nner region 1s more likely to be a power law
relation rather than a logarithmic relatloa.

Development of the Empirical Mean V2locity Profile Equation

The present model no doubt will be imdroved as the understanding of
turbulence becomes more complete. For the present it can give some
Justification for the boundary-layer veloclty equation employed.

The form of the equation 1s suggested in reference 1. Reference 1
further demonstrates how the relation not >nly represents the velocity
distribution, but also predicts the measur=d turbulent shear-stress
distribution.



The fact that the flow in boundary layers is similar to that in
channels has long been realized. Thus, an attempt was made to apply the
relation of reference 1 to the turbulent boundary layer (see ref. 3).
The relation proved only approximately correct, as might have been ex-
pected, since the boundary layer has more freedom of motion than that of
fully developed channel flow. However, the relations suggested from the
analysis of reference 3 have led to some extensions, which are incorpo-
rated in the present analysis. In reference 3 the relatlion from refer-
ence 1 was employed directly as

U_ ;),-2 XZn
Ul_A+B(1-8) +c(1-5) (1)

where A, B, and C were determined from boundary conditions. (Symbols
are defined in appendix A.) An important observation of reference 3 was
that the square power term contributes greatly in the outer region of the
layer; both power terms contribute in the inner region. For turbulent
channel flow the square term is necessary so that the equation can be
reduced to the exact laminar veloclty distribution, and in line with the
results of reference 2, the outer region of turbulent channel flow must
vary like the laminar velocity distribution. Thus, for channel flow
equation (l) corresponds to the model of the outer region of the flow.
However, for laminar boundary-layer flow the use of a square power would
not be expected to be exact. A generalization of equation (1) is there-
fore necessary if accurate results are to be obtained for a boundary
layer. As the next logical step in equation (l), the square power term
is replaced by an arbitrary power m. The power 2n 1s retained as
such, so that the present notation remains the same as references 1 and
3. It 1s, of course, obvious that m and 2n are interchangeable with-
out altering the basic equation. However, for the present analysis the
boundary conditions are employed so that m will correspond to the
square term for the proper profile. In other words, m will correspond
to the power for a laminar velocity distribution.

The present analysis starts with the followilng equation:
m 2n
_U_,A+B(-z) +c(1-z) (2)
Uy a] s}

A, B, and C are evaluated from the following boundary conditions, which
are valid for both laminar and turbulent boundary layers when
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The values of A, B, and C are
A=1

p=2e-n)_ . (2)
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where s 1s a fundamental wall shear-stress parameter defined as
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For channel flow, with & equal to the channel half-width, s 1is a ratio
of the wall shear stress Tw to the corresponding laminar (same maximum

velocity Uy) wall shear stress 2U1p/6. The parameter ¢, as noted in

equation (4), is used for the value of the particular grouping of s, m,
and 2n encountered. Equation (2) is rewritten as

I—%=1+§(1—-%)m—(l+§)(l-%)2n (5)

Equation (5) is a general relation for tte mean velocity distribution
in boundary layers, or for any shear flow for which the boundary condi-
tions (eq. (3)) are valid. There are four corstants, 5, m, 2n, and s,
which must be known to completely specify the profile.

General 1limits on the magnitude of the ccnstants are as yet unknown.
The boundary conditions (eq. (3)) require positive values of m and 2n.
The values of m and 2n are not limited to whole numbers in order to
obtain accurate distributions; therefore, the high-order velocity de-
rivatives at the outer edge of the boundary layer (y = 8) may not be
finite. (The failure to match high-order velocity derivatives 1s a dis-
advantage of most empirical relations for the velocity distribution.)
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However, the high-order velocity derivatives do not generally enter into
boundary-layer calculations. A distribution can be calculated for both
positive and negative (reverse flow) values of the skin-friction parameter
s (ref. 3, see fig. 1(c)). The special cases of the constants, 2s=2n=m
and m = 2n, will be considered in the section on laminar flow. The case
of 2n =e will prove of value in the separation region.

The present constants, {, m, and 2n are related to the familiar
boundary~layer parameters, displacement and momentum thickness, by the
following equations

g* ¢ 1+t
T T Tm+itmnyl (6)

and

ol

2 2 1 (1
='mil-2m§+1+(1+§) [2n+§1+1+2n+1-4n15)] (7)

This report now discusses the adequacy with which equation (5) repre-
sents both laminar and turbulent velocity distributions.

THE TURBULENT BOUNDARY LAYER

Turbulent flow 1s considered first since it is the more complex case
of boundary-layer flow. The present analysis demonstrates how equation
(5) will fit measured turbulent boundary-layer profiles. The ultimate
engineering objective would, of course, be that equation (5) may be used
to predict the development of turbulent boundary layers. However, the
present analysis cannot proceed beyond the prediction of the velocity
distribution, once the values of the necessary constants are determined
from other sources. To someone unfamiliar with the literature on tur-
bulence the fitting of an analytical expression to an already measured
profile may not appear to be of much value. However, the present state
of knowledge of turbulent boundary-layer flow is incomplete, therefore,
the mere fitting of experimental data is still a major problem. Appar-
ently, the only method found in the literature for fitting a complete
curve through the turbulent mean velocity data (with exception of ref. 3)
is that developed in reference 9. Tables were compiled in reference 9
(from experimental data), which when used with experimental values of
skin friction and various coefficients give reasonable velocity distri-
butions for the turbulent boundary layer. The results are based on the
hypothesis that similarity exists for both the outer and inner regions
of the boundary layer. The present general relation does not require the
existence of similarity, but similarity will prove useful in the applica-
tion of the relation.



Comparison with Measured Velocity Distributions

Direct evaluating of equation (5) for any particular measured pro-
file 1is a problem of determining m and in, since & and s can be
found from direct measurements. For the present determination, m and
2n are expressed in terms of 5% and 6, since these values can readily
be obtained from the measured data. Use of equations (6) and (7) (with
knowledge of & and s) directly to evaluate m and 2n in terms of
8% and 6 is quite tediousj however, it will be demonstrated later that
it 1is possible to make an approximation which greatly simplifies the
calculations. An outline of the method of calculating a profile is given
in appendix B.

Figure 1 compares actual measured proriles with the predicted dis-
tributions of equation (5). The value of & for these profiles was
arbitrarily taken as the point where the free-stream velocity appeared
to be reached. The proper value of &, independent of an arbitrary
choice, could be obtained from measurements of the intermittancy of tur-
bulence (see ref. 10); however, intermittency measurements are not avail-
able for the profiles presented in figure ...

For figures 1(a) and (b) the values o wall shear stress, necessary
in determining s, were obtained from local. heat-transfer measurements
(see ref. 10). For figure 1(c) the skin-friction value was obtained from
the relation developed in reference 7. Figure 1(d) shows the separation
profile measured in reference 1lj as will be shown later no skin-friction
value was required. The heat-transfer method was also employed in ref-
erence 7 in order to evaluate the skin friction of figure 1(e). Fig-
ure l(f) shows a separation profile in whi:h an uncertainty In skin fric-
tion exists. In order to fit the profile ‘fig. 1(f)) it was assumed that
2n had increased to such a large value that it might be taken as infinite;
in this case no value of s 1s required. This conclusion will be covered
more fully in the section Separation Regioa.

In most cases the fit of equation (5) to the measured data is quite
good. Note that on figure 1(a) a curve predicted by the method outlined
in reference 3 is also included to show the improvement of the present
approach. It would have been surprising hid the predictions of equation
(5) not fitted the measurements, since the relation was forced to meet
all boundary conditions including the shea:* at the wall plus two integral
values. The fitting of equation (5) to th: data is, of course, sensitive
to the values of &, 6*, and 6 used. A ;light change 1n any one of the
parameters may alter the fit of equation (5). TFor the thicker boundary
layers, such as those of figures 1(a) to (1) the parameters are known
quite accurately, and no great question arises in their determination.
However, for the profiles, such as the data of figure 1l(e), which must
be taken from small plots, the accuracy of evaluating the parameters is
limited. For the two profiles of figure 1{e), ® was chosen in each case



as the last plotted point of the data of reference 7. In each case it
appears that a somewhat better fit could have been obtained if a slightly
different value of & were used.

A region may be noted in figures 1(c) and (d) for small y/5, where
the predictions appear to be low as compared with the measured points.
Since these data (figs. 1(c) and (d)) are for profiles in and neur the
separatlon region, some gquestion of the experimental accuracy exists.
However, it is suspected that this deviation may indicate a fundamental
difference between the predictions of equation (5) and actual flow con-
ditions. As noted in the discussion of the flow model for turbulent
boundary layers, there is no provision made in the present analysis to
account for any subregions of abnormally high turbulence. Reference 12
reported evidence which suggests such local maximums of turbulent energy
in the separation region. Recent unpublished hot-wire measurements (re-
corded by V. A. Sandborn) also appears to confirm the findings of ref-
erence 12 for the region near separation.

Similarity of the Outer Region of the Turbulent Boundary Layer

As noted previously the concept of similarity has been employed to
study both the inner and outer regions of the boundary layer. It is
instructive to examine the present velocity profile equation from the
standpoint of similarity, since similarity can be shown to give an ap-
proximate method of evaluating the parameter m. In order to develop
the concept of similarity in the outer region, the ideas illustrated in
references 2 and 4 are reviewed briefly.

Reference 4 demonstrates experimentally that for particular pressure
distributions, obtained by trial and error, a turbulent boundary-layer
flow can be established in which all the velocity profiles for the outer
haliniid

Uy
were termed equilibrium flows and will, henceforth, be referred to as
such. Two parameters

region are identical when plotted as against %. Such flows

U, -U

A = e dy (8)

0

and
- 2
By

o Uy

G = (9)
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were employed to specify each particular ecuilibrium flow. Obviously,
U-1U

if ——ﬁ——i 1s a unique function of %, as required for an equilibrium
T

flow, then A/& and G are unique constarts for the same equilibrium
flow. It should be kept in mind that the profiles only approach identical
profiles in the outer region of the layer, so A/S and G will vary
slightly from one profile tc another even for the same equilibrium flow
(since Ul/UT 1s not necessarily constant in equilibrium flows). How-

ever, the inner region where the similarity is not valid is so small com-
pared with the outer region that the experimental value of the integrals
(8) and (9) is unaffected by the deviation.

The parameters, displacement and momertum thickness, are related to
A and G, respectlvely, through the skin friction as

5 =YY= A (10)

C Cp
0 = —23(1 -G'/:;,f-)A (11)
Equations (10) and (11) may be combined and rewritten as follows
6 _%* (G (5*‘2
) '(A76>‘8>‘,’ (12)

Thus, for an equilibrium flow (Z;E) is a coastant, and a unique relation
between 6/8 and 8*/8 is predicted.

and

Equation (12) is the clue, which brougit about the present general-
ization of the equation of reference 3. In reference 3 it was noted that
by neglecting terms of order l/Zn in the :xpressions for momentum and
displacement thickness (corresponding to egiations (6) and (7) of the
present analysis) an equation of the form o7 equation (12) was obtained.
(It is now evident that ref. 3 was dealing 'vith the particular equation

for the equilibrium flow defined by (Z;g) = %) The present analysis gives

= % - %§m++l§ (_@;)2 (13)

the relation

[o Kes)
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when terms of order 1/2n are dropped from equations (6) and (7),

and the two equations are combined. (As can be seen in fig. 1, 2n 1is
always an order of magnitude larger than m.) It follows that for equa-
tions (12) and (13) to be equivalent, m must be a constant for each

particular set of equilibrium flows. The relation between m and 6555)

)y

The plus sign is used for the square root term in order to ensure an m
value always positive and greater than one, as is required in the veloc-
ity equation.

is

The agreement with the similarity assumptions of reference 4 can be
demonstrated by rewriting equation (S) if the 2n power term is dropped
completely. In the parameters used for similar profiles the relation
becomes

U, - U m
1o .A b
T =% (m+1)(1-8) (15)
which requires at y = 0 (U = 0)
U
ﬁl = % (m + 1) = constant (16)
T

Equation (15) can be compared with the results of reference 4 by
setting m = 1.8 for constant pressure flow (as computed from the values
of A8 =3.6 and G = 6.1 given in ref. 4). In particular, reference 2
fits the known laminar profiles to the outer region of measured turbu-
lent profiles. Figure 2(a) compares equation (15) for the flat-plate
case with a curve of the family of Blasius profiles. While the agree-
m=nt is certainly good, it 1s suspected that it might even be better than
shown, since reference 4 notes: "In plotting these curves a small cor-
rection was made In the constant 3.6 to account for the fact that the
laminar profiles are not expected to represent the turbulent profiles
in the inner 10 to 20 percent of the layer." A slight change in the
constant 3.6 could account for the disagreement of the present relation
and that given in reference 4.

Figure 2(b) shows a comparison of equation (15) evaluated from the
constants for pressure distributions 1 and 2 (ref. 4). A representative
laminar profile reported in reference 2 is also shown for each profile.
The Z}t of the present profile could be improved by a slight adjustment
in 5.
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A further comparison of the flat-plate profile with an experimental
measurement 1s made in figure 3 in order to determine an accurate value
for m. The comparison with the analysis of reference 2 shows that for
optimum fitting of the present relation a slight adjustment in the con-
stants 1s required. The dashed curve of figure 3 demonstrates the im-
provement of fit when the value of A/® 1is %taken as 3.5 instead of 3.5.
The value of G was not changed.

The results of the present analysis of similarity profiles need not
be limited to only equilibrium flows. Equation (13) is expected to apply
for any turbulent flow in which 2n>> m. It is observed experimentally
that the condition 2n >>m becomes progressively better the farther the
flow is from the transition region. Obviousiy, the region of application
of the approximation is governed by the concept that the thickness of the
sublayer decreases as the Reynolds number based on distance downstream
increases.

The present analysis may be employed to indicate the approach of a
boundary layer to an equilibrium flow. The cata of reference 13 shows
the severe case of a zero pressure gradient boundary layer disturbed by
a rod. Figure 4 shows three profiles measured at different x-distances
downstream of a 0.24-inch-diameter cylindrical rod in contact with the
wall. The dashed curves on figure 4 are the zero pressure gradient
equilibrium profiles obtained from equation (15) with m = 1.9, For fig-
ure 4(c) the profile is approaching closely the equilibrium profile pre-
dicted for the outer region.

The solid curves of figure 4 were obtaired by using equation (13)
to evaluate m and then using equation (6) in the approximate form

g--(mﬁtl)%ii (17)

to evaluate (. The rod represents the case where turbulence is produced
excessively at a location within the boundary, thus, the general equation
is not a good fit of the measurements.

Similarity of the Inner Region of the Turbulent Boundary Layer

The concepts of similarity of the inner region stems from considera-
tions of mixing length and dimensional analysis. The variables U/Uf and

YUy/v have been accepted as the similarity coordinates, with large volumes

of data supporting their use. Recent analyti:al work (ref. 9) has proposed
that the velocity distribution in the inner region reduces to one universal
curve when plotted in the U/Uf - yUr/v cooriinate system. The present

analysis, however, does not support the hypotaesis that U/UT is a
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function of yU&/v only, although the present analysis is in good agree-
ment with experimental data in this inner region.

The data of figure 1 are replotted for the inner region in terms of
U/Ur and yUnN in figure 5. The predicted distributions of figure 1

are also converted to the new coordinates and are shown as the solid
curves on figure 5. Also included in figure 5 (dashed curves) is the
falred distribution given by reference 9 as the best representation of a
great number of experimental profiles. The linear relation U/U¢ = yUcp

is included as a reference curve on figure S. In all cases the prediction
of equation (5) appears equal to or better than the curve of reference 9.
Obviously, the experimental data presented In figure 5 do not suggest one
universal curve for all turbulent profiles.

Although the present relation does not give the linear relation
U/Ur = yUg/v, 1t may be shown to approach this linear relation. Equation

(5) mey be rewritten, using the binomial series, in order to allow a
closer look at the "low" powers of (y/8). In terms of U/U; the equation

may be written as

yUu. yu. 3 2 _ zp2 _ 3 2

Ug v 3 3(2n - m)

g% nm {(%)2 + 5= %: - m)(%)s + e ..

(18)

To first order in y, U/Ug = yUg/v3 however, second and higher order ve-
locity derivatives are predicted at y = 0.

The existence of the second velocity derivative at the wall is ob-
Jectionable since it is considered essential that it vanish for the flat-
plate case (see ref. 14). The second derivative at the wall was shown in
reference 3 to glve a reasonable interpolation for the measured turbulent
shear stress to the wall. However, the approach of the turbulent shear
stress to the wall as the fourth power of the distance (Logically deduced
in ref. 15) stands as an objection to the present relation. The first
derivative, unlike the second, fits the boundary condition, and also fits
the data over most of the layer, although there are some limited regions
where the deviation from data is detectable. The velocity distribution
itself fits the data well, and therefore all integrals derived from the
velocity distribution are expected to give adequate accuracy.
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Separation Region

In order to attach physical significance to the present results at
separation, the model pictured for the boundary layer must be expanded.
Separation is believed to begin in a very intermittent way, such as ob-
served in waterflow (ref. 12). This intermittent separation region may
have a time average shear stress at the wallj although as will be seen,
the velocity distribution is more or less independent of the wall condi-
tions. It is assumed that the inner region, which depends greatly on
wall conditions, vanishes at the start of intermittent separation. The
vanishing of the inner or sublayer agrees with the concept that it de-
creases in thickness as the x-Reynolds number increases. The appearance
of the constant virtual viscosity boundary layer can be postulated to be
the beginning of intermittent separation.

The sequence of flow events beyond the beginning of intermittent
separation is not treated. It can be concluded that two-dimensional
separation with skin friction equal to zerc occurs somewhere downstream
of the start of intermittent separation. Further downstream a region of
reverse flow might also be expected.

Because of the above suggestions, the case of wall shear stress
equal to zero is not considered as a criterion for separation, but rather,
the special case of equation (5), in which the 2n power term is neg-
lected, will be considered. Mathematically this is done by taking the
limit of equation (5) as 2n approaches infinity. The simple profile

g=1-(-3) (19)

results. (Eq. (19) was first implied from the evaluation of the separa-
tion profile (fig. 1(d)).) With the use of equations (13) and (17) to
evaluate m and {, a value of -1.00 for ! was obtained. Note that
equation (19) with m = 2 1is the exact solition for laminar flow in a
channel, Poiseuille flow. With m = 1 equation (19) is the Couette flow
solution. A value of s may be obtained f-om the derivative of equa-
tion (19), s = m/2. The hypothesis that s = O at separation is not
required by equation (19). The value of wall shear stress does not enter
into the calculation of the velocity distrijution as specified by equa-
tion (19) because of the reduction of the iiner layer to a negligibly small
region.

If equation (19) can be accepted as rejresentative of flow at sepa-

ration, it leads to a unique relation betwe:n momentum, displacement, and
boundary~layer thickness

T =1+ — (20)



15

Equation (20) may be used as the criterion for the onset of intermittent
separation. At a given value of 6*/6, profiles with values of the form
factor 8%/6 greater than that predicted by equation (20) will be sepa-
rated. A plot of equation (20) is shown as the dashed curve on figure 6.
Experim=ntal values of the form factor 6*/6 and 6*/6 for preofiles
measured near the start of turbulent separation are plotted on figure 6.
These measured points are for several different flow configurations. In
all cases the predicted criterion seems quite reasonable and is within the
limits of uncertainty of measurement as to where separation is occurring.

The insert on figure 6 shows data (ref. 20) for the flow in an axi-
symmetric diffuser. (Only the data in and approaching the separation
region are plotted.) No statement about separation was made for the
data of reference 20j; however, if the values of skin-friction coefficient
listed in table II of reference 20 are plotted against x, it is noted that
a definite break occurs in the curves near Cg¢ = 0.0004. It was arbitrar-

1ly assumed that Cp = 0.0004 represents the onset of intermittent sepa-

ration. The insert in figure 6 shows that the assumption for the onset
of separation corresponds to the predictions of equation (20).

An approximate method of treating shock-induced turbulent separation
based on knowledge of the form factor before and after the separation 1is
made in reference 21. A one-seventh power profile was selected
(3*/5 = 0.1250) as being representative of flat-plate turbulent boundary
layers. This gives a form factor of 1.286 before separation. In order
to correlate shock-induced turbulent separation measurements reference 21
selected a value of H = 2.2. The present criterion for separation, using
the same value of 6*/8, would predict H = 2.143 at separation, and the
point at 6*/8 = 0.1250 (ref. 21) 1is included on figure 6; the agreement
is seen to be good.

THE LAMINAR BOUNDARY LAYER
Equation for the Laminar Boundary Layer

For laminar flow it is possible to simplify the general equation.
No longer do two separate power terms seem necessary to account for two
different boundary-layer regions. Several possible mathematical condi-
tions may be imposed on equation (5) in order to eliminate one of the un-
knowns. One m=thod, self evident from attempts to fit laminar profiles,
is that 2n = mj this is an indeterminate point of equation (5). Taking
the limit of equation (5) as 2n- m yields the following relation (s
and & being held constant):

%”'(‘%)m [(zS-m)logl-%n] (21)
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Another possibility 2s =m (or 2n) would also eliminate one of the power
terms from equation (5). However, the same result is obtained if 2s = m
is required in equation (21).

LU I ( - %)m (22)

Thus, equation (21) is a more general relatisn than equation (22). Equa-
tion (22) is identical to equation (19). Equation (22) is an easily
identified equation for laminar flow in that it contains several exact
solutions.

m = O (Potential flow)
m = 1 (Laminar Couette flow)

m = 2 (Leminar Poiseuill: flow)

]

Equation (22) may also serve as a first approximation to laminar boundary-
layer flow, however, the restriction 2s =m 1is not exact for boundary-
layer flow. Equation (21) has been considered the most logical choice

to represent laminar boundary layers.

The skin-friction parameters may be expressed in terms of the free-
stream pressure gradient by employing the boundary condition at y = O.

BZU ap fi.Ul
“g;E:&"'pUl??x— (23)

(This boundary condition was useable only for the laminar case of eq.
(5).) The following relation between s, my, and & 1is obtained by using
condition (23):

ot 1 2
o vax t¢ - A4 m® (24)
(2m - 1) (2m - 1)

Where (Sz/v)(dUl/dx) 1s the well-known Pohlhausen pressure-gradient param-

eter \. Equation (21) is reduced to a two-parameter (m and &) family
of curves by using equation (24)

e (- %)m [m(?z,; to X og (1 - 1) - ] (25)

The need for two parameters to represent adequately laminar velocity
distributions was pointed out in reference 22. A one-parameter family,
such as the Pohlhausen fourth-degree polynomial, gives reasonably accurate




17

solutions in a region of accelerated flow, but its adequacy in a region
of retarded flow may be quite poor. Equation (22) is also objectionable
from this standpoint.

The relations for displacement and momentum thickness are

5 " (m- Dm+nZ @D

8  m(m - 1) - x 1 (26)

m(m - 1) - A + m o 2[m(m - 1) - A]
(2m - 1)(m + 1)2 (2o + 1)(m + 1)  (om - 1)(2m + 1)2

8 _
: =

2[m(m - 1) - X]z
(2m - 1)2(2m + 1)3

(27)

Equation (25) could be used with the momentum-integral and energy-
integral equations (see, for instance, ref. 22) to obtain an approximate
solution for the complete laminar boundary layer. However, since the
present report aims to demonstrate the ability of the equation to repre-
sent the velocity profile, the tedious process of solving the complete
equations was not undertaken.

Comparison with the Blasius Flat-Plate Velocity Distribution

The present relation can be compared with the Blasius profile by
assuming a value for the boundary-layer thickness 8&:

vX
® = 5.2 T, (28)

This thickness corresponds to a velocity ratio of U/Ul = 0,994 for the
Blasius profile. The parameter m 1s now computed from the momentum
equation, which for a flat plate is

40 _Tw__ 2sv _ mPy (29)
I = uF T 80 T 50 (e - D)
and
96 .95 ¢ (x=o0, flat plate) (0)

dx dx
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where o = 9/6, as expressed by equation (27) with A = 0. When & = O
at x = 0, the momentum equation is integrated to give

2m? <

= Yam - oyo (52)

Equation (31) together with equation (28) can be solved to give a value
of m = 2.86.

With the substitution of the value for m into equation (25) and
the setting of A = 0, the flat-plate laminar boundary-layer velocity
profile becomes

Ull =1 4 ( - %)2'86 [1.13 log(l - %) - l] (32)

The profile of equation (32) is compared with the Blasius profile in fig-
ure 7; for the Blasius case the relation y/& = q/5.2 was used. A com-
parison of the parameters computed for the jiresent profile with the exact
values of Blasius is as follows:

Present |Exact
analysis |values

(Blasius)

Cpl1.33 ——11.328 =
e V757 e VA
vx v

6 |0.664 % 0.664 7

* vx AZH
8% |1.74 7, 2720 g

The comparison of equation (32) with the Bluasius profile is certainly
satlsfactory, and the assumption used in arriving at the laminar equation
appears reasonable at least for the flat-plite case.

In the section Similarity of the Outer Region of the Turbulent
Boundary Layer, it was demonstrated that the velocity distribution in
U, - U
terms of ——Ti?—— is approximated by a simple power relation, equation

(18). A simple method can be suggested for determination of the power m
of turbulent profiles from equivalent laminsr flows. Consideration of
equation (22) with the momentum equation (29¢) requires that 2s = m and
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m
= L] i i
oA @+ @+ 2) The equation for &, equivalent to egquation (31),

18

8 = [2{mw + 1)(2m + 1)]‘/% (33)

For the Blasius case B = 5.2 ,/vx/Uj, it is found that m = 1.86. Thic

value of m may be compared with the values of m = 1.8 and 1.9 shown
in figure 3 for the outer region of the turbulent boundary layer.

A comparison of the laminar equation (32) with the turbulent equation
(15) (m = 1.9) is shown as an insert in figure 7. The similarity coordi-

Uu-=0
nate for turbulent boundary layers ——ﬁ——l is used for the plot. The
T

by using the constant (/kK)§/n* (ref. 2, see ordinate of insert of

laminar profile, equation (32), was transformed to this coordinate system
‘/ U'(0)
U

fig. 10). The change due to the apparent difference in viscosity is ac-
counted for by the k, which was equal to 0.018 (ref. 2). The value of
1 at y =8%% in the laminar boundary layer is n¥, and U'(0) is the

derivative of U with respect to 1 at 75 = 0. For the present trans-

1
formation this constant (\/E)‘ﬂgrﬁgz:z was 0.102. Good agreement is
1

obtained between the profile from the equation for mean velocity in a tur-
bulent layer (eq. (15)) and that for an equivalent laminar layer obtained
by proper transformation of equation (32).

Comparison with the Laminar Separation Profiles

As in the turbulent boundary-layer case, a consideration of the
separation region of the laminar boundary layer is of prime importance.
Laminar flow separation seems well defined as the point where s = O.
The conditlon s = O leads to a simplification of the velocity equation
(21), and also yields a relation for form factor 6*/9 as a function of
the Pohlhausen pressure gradient parameter.

For s = 0, equation (24) gives the following relation of m and

m= 4 ~/?i (34)

and equation (24) reduces to (only the plus sign gave physically real
results):
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o by et -y]

This separation equation does not require a particular value of A at
separation, but agrees with the fact that separation occurs over a range
of A Dbetween spproximately -5 to -12.

The relations for displacement and momentum thickness become

8% _ 2+l (36)
5 (VX +1)2

o _ R+ 2y w1
O (VR + 1) (2 X+ 1) (A +1)2 (2% + 1)

Equation (35) is compared with several different laminar separation
profiles in figure 8. The value of A 1in each case was taken either from
stated values or from information known about the profile being compared.
(For the theoretical profiles & 1is taken at U/Ul = 0,995 +to compute

A.) Figure 8(a) compares the present predict..on and that of the Pohlhausen
equation for X = -12. In figures 8(b) and (:) the theoretical profiles
computed in references 23 and 24 for differen particular pressure gradi-
ents are compared with the present relation. Figure 8(d) compares the
Present relation with actual measurements made in the separation region

of an elliptic cylinder (ref. 25).

(37)

The agreement of the present profile with the two theoretical pro-
flles 1s quite poor. There is, of course, a possiblility that the theo-
retical profiles are questionable in that the: depend on the basic
boundary-layer assumption that conditions charge very slowly in the x-
direction. This assumption is not generally valld in the separation
region. Both the Pohlhausen and the present profile are independent of
this condition. The prediction of the experirientally measured separation
profile (fig. 8(d)) is much better than in the case of the theoretical
profiles, although the predictions are slightly lower than the measured
points. The present relation would agree almcst exactly with the data
of reference 25 if A had been -6 instead of -5.

The form factor &%/6 may be expressed es a function of A by com-
bining equations (36) and (37). This relatior is plotted as a function of
\/—X on figure 9. Values from the separatior profiles considered in fig-
ure 8 are also shown on figure 9. For the particular profiles considered
the prediction of separation is acceptable. The relation indicates that
the limiting value of a form factor 1s 2.687 fcr ~/:i,4>-. This limiting
value of form factor might be compared with tke value of form factor of
2.60 for the Blasius profile.

A e
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CONCLUSIONS

A modified form of the velocity relation previously proposed in ref-
erence 1 has been studied in order to establish a general relation to
represent boundary-layer velocity profiles for both laminar and turbulent
flow. The resulting relations are consistent with a reasonable model of
the flow and represent experimental velocity profiles gquite adequately.
Some of the specific conclusions drawn from the present study are:

1. The proposed equation fits measured turbulent boundary-layer ve-
locity profiles quite well.

2. The relation for turbulent boundary layers agrees with the pre-
sent concepts of similarity in the outer region of the boundary layer
in that a one-parameter family of profiles 1s obtained. A relation of
the similarity parameter to the equivalent laminar boundary-layer flow
parameters is possible if concepts from reference 2 are followed.

3. The present results are in reasonable agreement with available
experimental data over the whole profile, including the region near the
wall. It is demonstrated that the logarithmic profile does not represent
all experimental data.

4. A unique relation between the profile form factor and the ratio
of displacement thickness to boundary-layer thickness is obtained from
the present equation for turbulent separation. Comparison with experi-
mental data shows that the relation serves as an accurate criterion for
identifying turbulent separation.

5. The general equation reduces to a laminar profile equation which
accurately represented the Blasius flow. The laminar profile also checked
the Pohlhausen and an experimental separation profile accurately, however,
theoretical laminar separation profiles were matched less accurately.

6. A relation obtained for the form factor at laminar separation in
terms of the Pohlhausen pressure gradient parameter indicated separation
would not occur when the form factor was less than 2.67 (Blasius value
2.60). The criterion proves adequate for the available separation
profiles.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohioc, November 19, 1958
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APPENDIX A
SYMBOLS
A,B,C constants
Ce local wall shear-stress coefficient, -
z PUp
G equilibrium boundary-layer profile parameter, eq. (9)
* -
K constants (6—8_*—-)—5%
k constant to account for turbulent viscosity
L characteristic length
m profile parameter depending on outer reglon of boundary layer
n profile parameter depending on inne- region of boundary layer
P static pressure
LU
Re Reynolds number, _;l
U;86
Reg Reynolds number based on momentum thickness, ——
v
Oty
s wall shear-stress parameter,
ZU]_V'
U local mean velocity
Uy free-stream mean velocity
. W
Uy skin-friction velocity,‘/‘%—-
X distance along curved surface of elliptic cylinder
b'4 direction parallel to boundary and in direction of mean flow

y directlon normal to boundary and aprroximately normal to mean flow



equilibrium boundary-layer profile parameter, eq. (8)

boundary-layer thickness, in.

boundary-layer displacement thickness, in.

profile weighting function, 2(s - n)

Zn - m
. 1
variable, y %

boundary-layer momentum thickness, in.

g2 dU;p
Pohlhausen pressure-gradient parameter, v

coefficient of viscosity
kinematic viscosity, p/p
density

local wall shear stress

23
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APPENDIX B

PROFILE CALCULATION PROCEDURE
Equation (5) can be used to compute any Surbulent boundary-layer
velocity profile once 9/6, 8*/5, and ® are known along with the gen-
eral flow conditions of the main stream, namely density, viscosity, and
velocity. A brief summary of the necessary steps in computing a profile
is given in the following procedure:

(1) If no value of skin friction is given, compute s from its defi-
nition and the relation for the skin-friction coefficient from reference

¥*
7, Cp = 0.246x10-0-678(8%/0)g,50.268
Thus,

BU
S = ZV— Cf

(2) Compute m from equation (13)

m=K -1+ JK(K - 1)

where

(3) Compute ¢ from equation (17)
t - @+ 1) (F)

(4) Compute n from definition in equatisn (4)

0 = 2s + {m
2(1 + ¢
(Use of eq. (17) (the simplified eq. (6)) in tie procedure is not mandatory
since it is possible to compute n from the ecact equation once s is

determined. Evaluation of n by either equation will for most profiles
give the same answer.)

(5) All parameters of equation (5) are computed in the above steps
80 the mean velocity can be calculated from equation (5).

CQU=11
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(a) Zero pressure gradient measurement (ref. 8); station 1;
free-stream mean velocity, 54.3 feet per second; boundary-
layer thickness, 1.15 inches.

Figure 1. - Comparison of equation (5) with turbulent
boundary-layer mean velocity measurements.
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(b) Adverse pressure gradient measuement (ref. 8); station 4;
Bp/ax approximately 0.2 pound pe:r square foot per foot;
free-stream mean velocity, 42.9 fiet per second; boundary-
layer thickness, 3.00 inches.

Figure 1. - Continued. Comparison of equation (5) with turbu-
lent boundary-layer mean velocity measurements.



1.0 -

— Eq. (5)

o9
507

g

0 2 4 6 .8 1.0
y/®

(c) Adverse pressure gradient measurements near separation
(x, 24.5 ft; ref. 11).

Figure 1. - Continued. Comparison of equation (5) with tur-
bulent boundary-layer mean velocity measurements.
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(d) Separation measurement (x, 28.7 ft; ref. 11).
Figure 1. - Continued. Comparison of equation (5) with tur-

bulent boundary-layer mean velocity neasurements.
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for m= 1.79, 2n = 156,
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O Great pressure rise; Re, 3.25x10%
Solid line predicted by eq. (5)

.2 for m= 1.82, 2n = 361, =

£ = -0.655, s = 62.8

y/®

(e) Measurements of reference 7.

Figure 1. - Continued. Comparison of equation {5) with tur-
bulent boundary-layer mean velocity measurements.
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(f) Separation measurement of reference 16.

Figure 1. - Concluded. Comparison of equation (5) with tur-
bulent boundary-layer mean velocity measurements.
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(b) Adverse pressure gradient.

Figure 2. - Comparison of present analysis with outer region similarity.
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Figure 3. - Comparison of flat-plate similarity profile with
measurements of a flat-plate turbulent boundary layer
(ref. 10).
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— — — Pohlhausen separation
profile, A = -12

.4 ,V ———— Present eq. with

)’ m= 2n, A= -12
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/
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7

y/®
(a) Comparison with the Pohlhausen profile.

Figure 8. - Comparison of the present equation for laminar
separation with various profiles.
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wtm ewem = Profile from ref. 23 as-

/ —
/ suning & = 7.2 ‘/%g
" 1

Present eq. assuming —
V. A = -6.22

0 2 o4 € .8 1.0
y/®

(b) Comparison with the theoretical profile for a linear
pressure gradient (ref. 23).

Figure 8. - Continued. Comparison of the present equation for
laminar separation with various profiles.
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(¢) Comparison with the profile for the Falkner-Skan flow
separation (ref. 24).

Figure 8. - Continued. Comparison of the present equation

for laminar separation with various profiles.

0

- 45



46
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(@] //////
O Observed profile
] Measurements cor-
8— rected for heat //
loss to wall
o/

.6 ©
u /

Uy /
/s(Eq. (:4) for
A= -5.03

.4
:;// from ref. 25)

.2 o /////,
)4
5

0 .2 .4 .6 .8 1.0
y/®

(@) Measurements on an elliptic cylirder (ref. 25); X,
2.029; separation at x = 1.99

g
qQ

k.

Figure 8. - Concluded. Comparison of present equation for
laminar separation with various profiles.
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